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Gut microbiome remodeling and
metabolomic profile improves in response to
protein pacing with intermittent fasting
versus continuous caloric restriction

A list of authors and their affiliations appears at the end of the paper

The gut microbiome (GM) modulates body weight/composition and gastro-
intestinal functioning; therefore, approaches targeting resident gut microbes
have attracted considerable interest. Intermittent fasting (IF) and protein
pacing (P) regimens are effective in facilitatingweight loss (WL) and enhancing
body composition. However, the interrelationships between IF- and P-induced
WL and the GM are unknown. The current randomized controlled study
describes distinct fecal microbial and plasma metabolomic signatures
between combined IF-P (n = 21) versus a heart-healthy, calorie-restricted (CR,
n = 20) dietmatched for overall energy intake in free-living humanparticipants
(women = 27; men = 14) with overweight/obesity for 8 weeks. Gut sympto-
matology improves and abundance of Christensenellaceae microbes and cir-
culating cytokines and amino acid metabolites favoring fat oxidation increase
with IF-P (p < 0.05), whereas metabolites associated with a longevity-related
metabolic pathway increase with CR (p <0.05). Differences indicate GM and
metabolomic factors play a role in WL maintenance and body composition.
This novel work provides insight into the GM and metabolomic profile of
participants following an IF-P or CR diet and highlights important differences
in microbial assembly associated with WL and body composition responsive-
ness. These data may inform future GM-focused precision nutrition recom-
mendations using larger sample sizes of longer duration. Trial registration,
March 6, 2020 (ClinicalTrials.gov as NCT04327141), based on a previous ran-
domized intervention trial.

As a principal modulator of the gut microbiome (GM) and weight
status, nutritional input holds great therapeutic promise for
addressing a wide range of metabolic dysregulation1. Dependent on
the host for nutrients and fluid, one of the main processes by which
the GM affects host physiology is producing bioactive metabolites
from the gastrointestinal (GI) contents. Nutrient composition,
feeding frequency, and meal timing impact this dependency2,3. To
maintain a stable community and ecosystem, the GM must regulate

its growth rate and diversity in response to nutrient availability and
population density4. Such maintenance is affected by caloric
restriction (CR) coupled with periods of feeding and intermittent
fasting (IF)5. Moreover, we’ve recently shown the nutritional com-
position and meal frequency during these periods alter the meta-
bolizable energy for the host6. The current study incorporates
protein pacing (P), defined as four meals/day consumed evenly
spaced every 4 h, consisting of 25–50 g of protein/meal7–9. Indeed,
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we have previously characterized a dietary approach of calorie-
restricted IF-P combined and P alone7,8. These studies included
nutrient-dense meal replacement shakes, along with whole foods, to
quantitatively examine beneficial changes in body composition and
cardiometabolic, inflammatory, and toxin-related outcomes in
healthy and overweight individuals7,8,10–12. Further, recent preclinical
work in mice has identified dietary protein as having anti-obesity
effects after CR that are partially modulated through the GM13. Thus,
the need to examine this in humans is warranted.

In this current work, we compare the effects of two low-calorie
dietary interventions matched for weekly energy intake and expen-
diture; continuous caloric restriction on a heart-healthy diet (CR)
aligned with current United States (US) dietary recommendations14

versus our calorie-restricted IF-P diet8,15, in forty-one individuals with
overweight or obesity, over an 8-week intervention. We hypothesize
an IF-P diet may favorably influence the GM and metabolome to a
greater extent than a calorie-matched CR alone. This exploratory
investigation utilizes data and samples from a randomized con-
trolled trial (NCT04327141) that compares the effects of the CR
versus IF-P diet on anthropometric and cardiometabolic outcomes,
as previously published15. As an additional analysis, we select “high”
and “low” responders based on relative weight loss (WL) for a sub-
group examination of the IF-P diet to better elucidate potential dif-
ferential responses to intermittent fasting and protein pacing. Of
special note, one individual lost 15% of their initial body weight over
the 8-week intervention; this individual is followed longitudinally for
a year to explore the dynamics of their GM and fecal metabolome.
Novel findings from the current study shows an IF-P regimen results
in improved gut symptomatology, a more pronounced community
shift, and greater divergence of the gut microbiome, including
microbial families and genera, such as Christensenellaceae, Rike-
nellaceae, and Marvinbryantia, associated with favorable metabolic
profiles, compared to CR. Furthermore, IF-P significantly increases
cytokines linked to lipolysis, weight loss, inflammation, and immune
response. These findings shed light on the differential effects of IF-P
as a promising dietary intervention for obesity management and
microbiotic and metabolic health.

Results
Intermittent fasting - protein pacing (IF-P) significantly influ-
ences gut microbiome (GM) dynamics compared to calorie
restriction (CR)
We compared an IF-P vs. a CR per-protocol dietary intervention
(matched for total energy intake and expenditure) over eight weeks to
compare changes in weight, cardiometabolic outcomes, and the GM in
men andwomenwith overweight/obesity (IF-P: n = 21; CR: n = 20). One
participant in each group were lost to follow-up due to non-
compliance with dietary intervention (Fig. 1a; CONSORT flow dia-
gram: Supplementary Fig. S1a). The primary outcomes of dietary
intake, body weight and composition responses, cardiometabolic
outcomes, and hunger ratings after both dietary interventions are
provided in our companion paper15. Briefly, after a one-week run-in
period consuming their usual dietary intake (baseline diet), with no
differences between groups at baseline for any dietary intake
variable15, both dietary interventions significantly reduced total fat,
carbohydrate, sodium, sugar, and energy intake by approximately 40%
(~1000 kcals/day) from baseline levels (Fig. 1b; Supplementary Data 1).
By design, IF-P increased protein intake greater than CR during the
intervention. The IF-P regimen consisted of 35% carbohydrate, 30% fat,
and 35% protein for five to six days per week and a weekly extended
modified fasting period (36–60h) consisting of 350–550 kcals per day
using randomization, as detailed previously7–10,15. In comparison, the
CR regimen consisted of 41% carbohydrate, 38% fat, and 21% protein in
accordance with current US dietary recommendations (Supplemen-
tary Table S1)14,16. Using two-way factorial mixed model analysis of

variance (ANOVA), significant macronutrient decreases drove energy
reduction from dietary fat and carbohydrate (p < 0.001), with
increased protein in the IF-P compared to CR (p < 0.001; Supplemen-
tary Fig. S1b; SupplementaryData 1). Regarding GI functioning andGM
modulation, IF-P significantly decreased sugar and increased dietary
fiber relative to CR (IF-P; pre, 20 ± 2 vs. post, 26 ± 2: CR; pre, 24 ± 3 vs.
24 ± 2 g/day; p < 0.05). Despite similar average weekly energy intake
(~9000 kcals/week) and physical activity energy expenditure (~350
kcals/day; p =0.260) during the intervention, participants following
the IF-P regimen lost significantly more body weight (−8.81 ± 0.71% vs.
−5.40±0.67%; p =0.003; Fig. 1c; Supplementary Data 1) and total,
abdominal, and visceral fat mass and increased fat-free mass percen-
tage (~2×; p ≤0.030), as previously reported15. In addition, within-
group analyses revealed a significant decrease in the reported fre-
quency of total and lower-moderate GI symptoms (GI symptom rating
score [GSRS] ≥4) over time for both IF-P andCR participants. However,
when comparing the two dietary interventions at each time point, a
more substantial reduction was observed in IF-P participants com-
pared to CR participants (i.e., −9.3% vs. −5.4% and −13.2% vs. −3.9%,
respectively; Table 1). The increased protein and lower sugar intake in
IF-P compared to CR may have favorably mediated the GM and
symptomatology.

The substantial reduction in calorie intake of both groups (~40%
from baseline) led us to investigate its potential impact on transient
microbial colonization in the gut, as estimated by 16S rRNA gene
copies (linear-mixed effects model [LME] time effect, p =0.114; Fig. 1d;
Supplementary Data 2). While it might be expected that a significant
reduction in calorie intake could influence gut microbial colonization,
our findings indicate that this reduction did not reach statistical sig-
nificance within the timeframe of our study. This result contrasts with
previous research that imposed more substantial energy restriction,
such as a four-week regimen of ~800 kcal/day in participants with
overweight/obesity, where overall gut microbial colonization notably
decreased4. In addition to assessing microbial colonization, we also
investigated whether the calorie reduction significantly influenced
principal stool characteristics, including wet stool weight, Bristol stool
scale (BSS), and fecal pH (p ≥0.066; Table 1). However, we did not
observe statistically significant changes in these parameters over the
course of the study. Moreover, there were no significant differences
between the two dietary intervention groups over time (interaction
effect, p ≥0.051). In contrast, there were significant time effects for
observed amplicon sequence variants (ASVs) and phylogenetic diver-
sity (LME time effect, p ≤0.023; Fig. 1e, f; Supplementary Data 2), with
values increasing at weeks four and eight compared to baseline
(pairwise comparisons, p ≤0.048); however, no interaction was
observed for either alpha diversity metric (group × time effect,
p ≥0.925). To rule out the potential confounding effects of GI transit
time17, BSS (as a surrogate marker) and stool pH were not significantly
correlated with alpha diversity (Spearman correlations, p ≥0.210). In
relation to community composition,muchof the intervention variance
could be attributed to individual response upon testing nested per-
mutational analysis of variance (PERMANOVA; R2 = 0.749, p = 0.001;
Supplementary Table S2), showcasing the highly individualistic land-
scapeof the humanGM in response to dietary intervention. However, a
significant 1.8% of the variance was accounted for by the group × time
interaction (p =0.001). Moreover, individual responses over time
showed variance between the twodietary interventions (PERMANOVA,
R2 = 0.123, p =0.003). This variability was apparent by assessing intra-
individual differences, where a pronounced increase in Bray-Curtis
dissimilarity was observed in the IF-P compared to the CR group after
four (median Bray-Curtis dissimilarity, 0.53 [IQR: 0.47–0.61] vs. 0.38
[IQR: 0.33–0.47]) and eight weeks (0.50 [IQR: 0.41–0.55] vs. 0.39 [IQR:
0.33–0.45]; Fig. 1g; Wilcoxon rank-sum test, p ≤0.005).

To understand the taxa driving this GM variation from baseline to
weeks four and eight between the two dietary interventions, we
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Metric

Male/Female

Age (years)

Height (cm)

Body weight (kg)

Body fat (%)

Body mass index (kg/m2)

Waist circumference (cm)

Systolic blood pressure (mmHg)

Diastolic blood pressure (mmHg)

Resting heart rate (bpm)

IF-P (n = 20) CR (n = 19) p-value*

6/14

49.7 ± 2.1

169.6 ± 2.6

93.1 ± 5.1

43.4 ± 1.5

32.4 ± 1.7

103.4 ± 3.4

123 ± 4

85 ± 2

72 ± 2

7/12

50.7 ± 2.4

166.8 ± 1.7

92.6 ± 5.5

44.1 ± 1.6

33.0 ± 1.6
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67 ± 1

-
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Fig. 1 | Study characteristics and changes in the gutmicrobiome (GM) between
intermittent fasting with protein pacing (IF-P) and continuous caloric
restriction (CR) diet groups over eight weeks. a Study design with baseline
participant characteristics. A registered dietitian counseled individuals from both
groups each week. Time points with data collection are shown for both IF-P and CR
participants. Icons createdusingBioRender.com.bTotal daily caloric intake at each
time point was not significantly different between IF-P and CR diet groups (two-
sided Student’s t-test, p <0.05). Adjusted values are displayed by dividing total
weekly intake by seven, to account for the fasting periods of IF-P. c IF-P participants
lost significantly more weight over time versus CR participants. Points connected
by line represent percent of weight compared to baseline weight for each partici-
pant. d Overall gut microbial colonization, as demonstrated by qPCR-based
quantification of 16S rRNAgene copiesper gramwetweightwas unaffectedby time
or intervention (linear-mixed effects [LME] model, two-sided p >0.05). Alpha
diversity metrics, e observed amplicon sequence variants (ASVs), and

f Phylogenetic diversity at the ASV level significantly increased over time, inde-
pendent of the intervention. g Intra-individual changes inGM community structure
from baseline to weeks four and eight in IF-P participants shifted significantly
throughout the IF-P intervention compared to CR as measured by the Bray-Curtis
dissimilarity index (two-sided Wilcoxon rank-sum test). All box and whiskers plots
display the box ranging from the first to the third quartile, and the center the
median value, while the whiskers extend from each quartile to the minimum or
maximum values. Heatmap of significant changes in h family- and i genus-level
bacteria by intervention. Colors indicate the within-group change beta coefficients
over time for each cell, and asterisks denote significance. Black-white annotations
on the bottom denote the significance of between-group change difference (by
MaAsLin2 group × time interactions; p-values were corrected to produce adjusted
values [p.adj] using the Benjamini–Hochberg method). For all panels, IF-P: n = 20,
CR: n = 19. Source data are provided as a Source Data file.
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constructed MaAsLin2 linear-mixed models with the individual parti-
cipant as a random factor18. We observed differential abundance pat-
terns at the family and genus level in response to the IF-P but not the
CR intervention. Of the 28 family and 69 genus-level features captured
after filtering, a respective total of six and 18 taxa displayed significant
interaction effects, with all significant time effects occurring from IF-P
(p.adj ≤0.10; Fig.1h, i; Supplementary Data 3, 4). Notably, the changes
observed at the four-week mark were more pronounced compared to
those at eight weeks. These early alterations may signify an initial
adaptation phase during which microbial populations respond to the
modified substrate availability and nutrient composition, suggesting a
degree of community resilience19. Increaseswere sustained to the third
fecal collection for the family Christensenellaceae and the genera
Incertae Sedis (Ruminococcaceae family), Christensenellaceae R-7
group, and UBA1819 (Ruminococcaceae family) (effect size > 2.0).
Christensenellaceae is well regarded as amarker of a lean (anti-obesity)
phenotype20 and is associated with higher protein intake21. Other
notable increases included Rikenellaceae, which, like Christensenella-
ceae, has been linked to reduced visceral adipose tissue and healthy
metabolic profiles22, and Marvinbryantia, a candidate marker for pre-
dicting long-term weight loss success in individuals with obesity23. In
addition, IF-P increased Ruminococcaceae, which has been noted to
have an increased proteolytic and lipolytic capacity24. This shift in IF-P
participants likely represents a change in GM substrate fermentation
preferences as the diet regimen (relative protein and carbohydrate)
and energy restriction is expected to increase the proteolytic: sac-
charolytic potential ratio25. In contrast, all taxa that decreased in IF-P
participants were butyrate producers. These included the family
Butyricicoccaceae and several genera such as Butyricicoccus (week
four), Eubacterium ventriosum group (weeks four and eight), and
Agathobacter (week four) (effect size < −2.0). When comparing
monozygotic twin pairs, Eubacterium ventriosum group and another
reduced genus, Roseburia, were more abundant in the higher body
mass index (BMI) siblings26. Others, such as the mucosa-associated
Butyricicoccus and Erysipelotricaceae UCG-003, have been positively
correlated with insulin resistance and speculated to contribute to
impaired glycolipid metabolism27.

Despite these changes in GM composition and increased fiber
intake (+30% vs. baseline) of the IF-P participants15, we did not detect a
significant shift in the abundance of the principal fecal short-chain
fatty acids (SCFAs), acetate, propionate, butyrate, or valerate, as

assessed by gas chromatography-mass spectrometry (GC–MS) (LME,
p ≥0.470; Supplementary Fig. S1c; Supplementary Data 5). Several
factors likely contribute to this finding. For example, the distinct
physical-chemical properties of fiber sources between IF-P and CR are
inherently different. Participants adhering to the IF-P diet consumed
most of their dietary fiber as liquid meal replacements (shakes) that
are rich in non-digestible, oligosaccharide dietary-resistant starch 5
(RS5). In contrast, subjects on the CR regimen consumed their fiber
from whole food sources such as vegetables, whole grains, and
legumes. These fiber sources provided a mixture of soluble and
insoluble fibers and a more complex fiber profile than IF-P partici-
pants. Moreover, even similar fiber profiles may function differently
due to differences in foodmatrices and/or food preparation (cooking,
raw consumption, etc.). Also of relevance is the timing of their fiber
consumption. IF-P participants’ fiber intake was concentrated in fiber-
rich shakes, offering immediate availability of fiber to the GI tract. In
contrast, CR participants consumed fiber through whole foods, lead-
ing to a slower digestion and absorption process influenced by indi-
vidual digestive transit times and enzymatic profiles. Interestingly, our
results parallel recent work where participants more than doubled
their fiber intake without affecting fecal SCFAs28. The disparate find-
ings may be due to the type of dietary-resistant starch (RS) as a
component of the nutrition regimen. In the current study, RS5 was
included in the meal replacement shakes (eight grams/shake, two
shakes/day, 16 g/day total). Prior research supports resistant starch
intakes of >20 g/day favorably modulate SCFA production, primarily
butyrate, over four to 12-week interventions29,30. Moreover, this lack of
response in fecal SCFAs in both groups may have been further com-
pounded by the significant reduction in energy intake in both groups,
where the epithelia of the GI tract may have absorbed any potential
increase in SCFAs from the dietary shift. It is worth noting that stool
analysis may not be the most reliable biological surrogate for cap-
turing SCFA flux over time28. Nevertheless, the changes in nutrient
quality, timing, ratios, and the observed shift toward proteolytic
activity suggest that the luminal matrix of digesta in the IF-P group
impacted substrate availability for GM. This effect appears to be an
influencing force in driving the observed beneficial shifts in microbial
communities, such as Christensenellaceae and Incertae Sedis, as well as
improvements in GI symptomatology in IF-P compared to CR. These
results underscore the complexity of dietary influences on GM and
highlight the need for further research to explore the impact of liquid

Table 1 | Self-reported gastrointestinal (GI) symptoms, stool characteristics, and fiber intake between intermittent fasting,
protein pacing (IF-P), and continuous calorie restriction (CR) at baseline and weeks four and eight

Variable Baseline Week 4 Week 8

IF-P (n = 20) CR (n = 19) IF-P (n = 20) CR (n = 19) IF-P (n = 20) CR (n = 19)

Total GI scores ≥ 2 130 (43.3%) 110 (38.6%) 102 (34%)b 90 (31.6%)a 76 (25.3%)c 68 (23.9%)c

Total GI scores ≥4 34 (11.3%) 27 (9.5%) 21 (7.0%) 18 (6.3%) 6 (2.0%)c 11 (3.9%)b

Total upper GI
scores ≥ 2

57 (40.7%) 45 (33.8%) 48 (34.3%) 40 (30.1%) 31 (22.1%)c 30 (22.6%)a

Total upper GI
scores ≥4

8 (5.7%) 13 (9.8%) 6 (4.3%) 6 (4.5%) 1 (0.7%)a 3 (2.3%)a

Total lower GI
scores ≥ 2

73 (45.6%) 65 (42.8%) 54 (33.8%)a 50 (32.9%)a 45 (28.1%)c 38 (25.0%)c

Total lower GI
scores ≥4

26 (16.3%) 14 (9.2%) 15 (9.4%) 12 (7.9%) 5 (3.1%)c 8 (5.3%)

Wet stool weight (g) 90.61 ± 15.82 93.38 ± 17.74 86.16 ± 11.89 128.12 ± 15.45 112.81 ± 15.36 120.97 ± 19.69

Bristol stool scale 3.35 ± 0.27 3.84 ±0.39 3.05 ±0.30 3.37 ± 0.31 3.10 ± 0.36 4.00 ±0.37

Stool pH 6.96 ±0.13 6.64 ±0.09 6.86 ± 0.08 6.68 ±0.09 6.86 ±0.09 6.90± 0.12

Fiber, g/day 19.7 ± 2.0 23.5 ± 3.0 29.3 ± 2.0a,d 22.6 ± 2.0 26.0 ± 2.0a,d 23.5 ± 2.0

GI scores are displayed as the sum of GI symptoms and the percent of participants reporting ≥1 symptom per category. Stool characteristic data are reported as mean ± SEM. Significant difference
frombaseline values as assessed bya two-sidedMcNemar’s test: ap < 0.05; bp < 0.01; cp < 0.001; significantdifference fromCR: dp <0.05. Therewereno significantdifferences betweengroups forGI
scores at each of the time points as assessed by a two-sided Fisher’s exact test (p ≥0.357) or wet stool weight, Bristol stool scale, and stool pH (p ≥0.066). Bristol stool scale evaluates the form of
human feces as a marker for transit time and ranges from 1 (separate hard lumps, long transit time) to 7 (watery, short transit time). Source data are provided as a Source Data file.
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meal replacements versus whole food sources on GM changes and
SCFA status.

IF-P modulates circulating cytokines and gut microbiome taxa
compared to CR
Caloric restriction and WL have been well known to positively
influence inflammatory cytokine expression, with GM now emerging
as an important modulator31. Surveying a panel of 14 plasma cyto-
kines, we noted significant interaction (group × time) effects for IL-4,
IL-6, IL-8, and IL-13 (LME, p ≤ 0.034; Fig. 2a–d; Supplementary
Table S3; Supplementary Data 6). These cytokines exhibited
increases at weeks four and/or eight compared to baseline exclu-
sively in the IF-P group (pairwise comparisons, p.adj ≤ 0.098), while
no significant changeswere observed in theCR group (p.adj ≥ 0.562).
Notably, IL-4 has been reported to display lipolytic effects32, and IL-8
has been positively associated with weight loss and maintenance33.
Regarded as a proinflammatory myokine, IL-6 can acutely increase
lipid mobilization in adipose tissue under fasting or exercise
conditions34–36. IL-13 may be important for gut mucosal immune
responses and is a stimulator of mucus production from goblet
cells37, which has been recently reported to be influenced during a
two-day-a-week fasting regimen inmice38. These results were of note
considering the significant total body weight, fat, and visceral fat
loss in the IF-P compared to the CR group. Surprisingly, correlational
analysis with change (post – pre) in anthropometric and select
plasma biomarker values with the cytokine profile did not reveal any
significant associations after correcting for multiple testing effects
(p.adj ≥ 0.476; Supplementary Data 7). Plasma cytokines were,
however, correlated with microbial composition for samples col-
lected in the IF-P group during the intervention period (weeks four
and eight) using graph-guided fused least absolute shrinkage and
selection operator (GFLASSO) regression, revealing associations
between cytokine-taxa pairs (Supplementary Fig. S2a). Of the four
cytokines that increased in IF-P participants, we identified multiple
significant correlations: Colidextribacter (rho = −0.55, p.adj = 0.015),
Ruminococcus gauvreauii group (rho = 0.50, p.adj = 0.036), and
Intestinibacter (rho = 0.45, p.adj = 0.086) with IL-4 (Supplementary
Fig. S2b) and an unclassified genus from Oscillospiraceae (rho =
−0.53, p.adj = 0.019), Colidextribacter (rho = −0.52, p.adj = 0.019),
and Ruminoccus gauvreauii group (rho = 0.51, p.adj = 0.019) with IL-
13 (Supplementary Fig. S2c).

Displaying negative correlations for IL-4 and IL-13, Colidex-
tribacter has been shown to be positively correlated to fat accumu-
lation, insulin, and triglyceride levels in mice fed a high-fat diet39 and
positively correlated with products of lipid peroxidation, suggesting
its potential role in promoting oxidative stress40. Conversely, Rumi-
noccus gauvreauii group was positively correlated with IL-4 and IL-13.
Although limited information is available regarding the host interac-
tions of this microbe, this genus is considered a commensal part of
the core human GM and able to convert complex polysaccharides
into a variety of nutrients for their hosts41. While these findings
highlight the potential interplay between specific microbes and
cytokine profiles, the directional influence—whether microbial chan-
ges drive cytokine alterations or vice versa—cannot be determined in
this study setting. Furthermore, despite the change in cytokine pro-
files in the IF-P group, we did not detect any significant time or
group × time effects when measuring lipopolysaccharide-binding
protein (LBP; Δ pre/post, IF-P: 0.24 ± 0.31 vs CR: −0.93 ± 0.49μg/mL;
p ≥0.254), a surrogate marker for gut permeability42. While the GM
plays a crucial role in modulating the gut-immune axis, the observed
cytokine fluctuations and microbial associations might also involve
other factors. These include the production of specific metabolites
due to shifts in microbial composition as well as the influence of the
dietary regimen itself, which may have a central role in shaping these
interactions.

IF-P and CR yield distinct circulating metabolite signatures and
convergence of multiple metabolic pathways
To understand the potential differential impact of IF-P versus CR on
the host, we surveyed the plasma metabolome, reliably detecting 136
plasma metabolites across 117 samples (i.e., QC CV < 20% and relative
abundance > 1000 in 80% of samples). Based on outlier examination
(random forest [RF] and principal component analysis [PCA]), no
samples were categorized as outliers, and all data were retained for
subsequent analysis.Metabolomic profile shifts were observed in both
IF-P and CR groups compared with baseline (Canberra distance),
however, thesedid notdiffer significantly by groupor time (weeks four
and eight;Wilcoxon rank-sum test, p ≥0.087; Supplementary Fig. S3a).
We prepared a general linear model (GLM) with age, sex, and time as
covariates and corrected for false discovery rate (FDR). When con-
trolling for these relevant covariates, we observed significant differ-
ences between IF-P and CR for 15 metabolites (Fig. 3a, Supplementary
Table S4): 2,3-dihydroxybenzoic acid, malonic acid, choline, agmatine,
protocatechuic acid, myoinositol, oxaloacetic acid, xylitol, dulcitol,
asparagine, n-acetylglutamine, sorbitol, cytidine, acetylcarnitine, and
urate (p.adj ≤0.089). To estimate the univariate classification perfor-
mance of the 15 significant metabolites, we performed a receiver
operating characteristic (ROC) analysis. Ten metabolites demon-
strated a moderate area under the curve (AUC) (0.718–0.819), while
five metabolites had an AUC<0.70. Therefore, to improve classifica-
tion performance, we constructed a supervised PLS-DA model using
levels of the 15 significant metabolites (p.adj ≤0.089) and analyzed
variable importance in projection (VIP) scores (Supplementary
Fig. S3b). Five metabolites with a VIP > 1.0 (2,3-dihydroxybenzoic acid,
malonic acid, protocatechuic acid, agmatine, and myoinositol) were
retained to construct an enhanced orthogonal projection to latent
structures discriminant analysis (OPLS-DA) model. In contrast, the
model fit was assessed with 100-fold leave-one-out cross-validation
(LOOCV; see “Methods” section). Permutation testing showed the
refined OPLS-DA model to have an acceptable fit to data (Q2 = 0.460,
p <0.001), with appreciable explanatory capacity (R2 = 0.506,
p <0.001; Supplementary Fig. S3c). TheROCanalysis produced an area
under the curve (AUC) of 0.929 (95%CI: 0.868–0.973, sensitivity = 0.8,
specificity = 0.9; Supplementary Fig. S3d) between the CR and IF-P
groups showing good accuracy of the GLM and providing strong
support for the differential expression of these 15metabolites between
groups.

Two metabolites, malonic acid, and acetylcarnitine, increased
compared to the CR intervention. Several other investigators have
noted the increase in acetylcarnitine via fasting protocols43,44. This
increase is consistent with free fatty acid mobilization and increased
transportation of these fatty acids via carnitine acylation into the
mitochondria for fatty acid oxidation. These results would also be
consistent with the expected ketogenesis, although not documented
in our study, but noted by similar fasting interventions44. Relatedly,
malonic acid, a naturally occurring organic acid, is a key regulatory
molecule in fatty acid synthesis via its conversion to acetoacetate;
hence, our results may reflect this increased synthesis in response to
the mobilization and oxidation of fatty acids occurring during fasting.
Other metabolites that decreased with IF-P include several sugar
alcohols (myoinositol, dulcitol, and xylitol). Dulcitol (galactitol) is a
sugar alcohol derived from galactose. It is possible that during fasting,
levels of dulcitol decrease as glucose (initially) and free fatty acids
(after 24–36 h of fasting) are preferentially utilized as energy sub-
strates. One amino acid (asparagine) and one amino acid analog (N-
acetylglutamine, associated with consumption of a Mediterranean
diet45) also decreased with IF-P relative to CR. Finally, 2,3-dihydrox-
ybenzoic acid significantly decreased with IF-P. This metabolite is
formed during the metabolism of flavonoids, as it is found abundantly
in fruits, vegetables, and some spices. At the cellular level, this
hydroxybenzoic acid functions as a cell signaling agent and has been
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speculated as a potentially protective molecule in various cancers46. It
is unclear whether this metabolite decreased due to either dietary
intake or metabolic processes related to high-protein intake or the
fasting protocol. Collectively, themetabolic responses to these dietary
regimens reflect the interrelationships of several anabolic and cata-
bolic physiologic responses to three key components of these inter-
ventions: (a) theWL process itself, (b) changes in amount (and type) of

macronutrient distribution (i.e., meal replacement shakes vs. whole
food diet approach; higher vs. normal protein intakes), and (c) the
adherence to fasting (IF-P only).

To determine the significantly impacted pathways of the dietary
interventions, we grouped participant samples according to baseline
or intervention period (weeks four and eight), with IF-P and CR
assessed separately. A total of 14 pathways were significant in the IF-P

a b

c

p.adj < 0.10

Fig. 3 | Differences in circulating metabolite signatures and metabolic path-
ways between the IF-P and CR diet groups. a Abundance and log fold-change of
significant plasma metabolites between IF-P and CR groups as determined by a
general linear model (GLM) adjusted for age, sex, and time. All GLM analyses uti-
lized two-sided p-values, with multiple testing corrections applied using the
Benjamini–Hochberg method (p.adj). Metabolome pathway analysis was

conducted for b IF-P and c CR using all reliably detected metabolites showing
significantly altered pathways (p.adj < 0.10) with moderate and above impact
(>0.10). Impact scores were calculated using a hypergeometric test, while sig-
nificancewas assessed via a test of relative betweenness centrality, emphasizing the
changes in metabolic network connectivity. For all panels, IF-P: n = 20, CR: n = 19.
Source data are provided as a Source Data file.

a b c d

p.adj = 0.074

p.adj = 0.018

p.adj = 0.999

p.adj = 0.997

p.adj = 0.006

p.adj = 0.002

p.adj = 0.999

p.adj = 0.999
p.adj = 0.001

p.adj = 0.001

p.adj = 0.997

p.adj = 0.999

p.adj = 0.098

p.adj = 0.144

p.adj = 0.999

p.adj = 0.999

Fig. 2 | Differences in plasma cytokinemarker concentrations between the IF-P
andCRdiet groups. a IL-4,b IL-6, c IL-8, andd IL-13: Each panel shows the cytokine
concentration levels. Significant time effects and interaction effects (group × time)
were detected using linear-mixed effects models (LME, two-sided p <0.05), indi-
cating differential changes over the intervention period. IF-P participants exhibited
significant increases in cytokine levels compared to baseline, as evidenced by

pairwise comparisons adjusted for multiple testing using the Benjamini–Hochberg
method (two-sided p.adj < 0.10). All box andwhiskers plots display the box ranging
from the first to the third quartile, and the center the median value, while the
whiskers extend from each quartile to the minimum or maximum values. For all
panels, IF-P: n = 20, CR: n = 19. Source data are provided as a Source Data file.
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group (p.adj < 0.10; Fig. 3b), with three displaying large impact coef-
ficients (>0.5): (1) Glycine, serine, and threonine metabolism, (2) ala-
nine, aspartate, and glutamate metabolism, and (3) ascorbate and
aldarate metabolism. In comparison, 24 pathways were significant for
the CR group (Fig. 3c), with four showing large impact coefficients
(>0.5): (1) Phenylalanine, tyrosine, and tryptophan biosynthesis, (2)
alanine, aspartate, and glutamate metabolism, (3) citrate cycle (TCA
cycle), and (4) glycine, serine and threonine metabolism. Notably, the
glycine, serine, and threonine pathway has recently been found in
preclinical models to play a pivotal role in longevity and related life-
sustaining mechanisms independent of diet, though heavily impacted
by fasting time and caloric restriction47. Thismaybe partially related to
the ability of glycine to increase tissue glutathione48,49 and protect
against oxidative stress50. In our analysis, this pathway was significant
in both diet groups and is biochemically and topologically related to
the additionally captured amino acid pathway, alanine, aspartate, and
glutamate metabolism, as well as the energy-releasing pathway, the
citrate cycle (TCA cycle). Notably, in the CR group, phenylalanine,
tyrosine, and tryptophan biosynthesis, are important for neuro-
transmitter production and reported to be suppressed (tryptophan) in
obesity51. This representation may have also been attributed to the
differences in protein intake52 or differences in dietary diversity53, yet
to be determined. Regardless, we noted similar representations of
pathway impact between IF-P and CR, with metabolic response cen-
tered on utilization of amino acids in addition to lipid turnover and
energy pathways.

Gutmicrobiome andplasmametabolome latent factors indicate
differential multi-omic signatures between IF-P and CR
regimens
As the plasma metabolome has been suggested as a bidirectional
mediator of GM influence on the host54, we performed a multi-omics
factor analysis (MOFA)55 to identify potential patterns of covariation
and co-occurrence between the microbiome and circulating meta-
bolites. Operating in a probabilistic Bayesian framework, MOFA
simultaneously performs unsupervised matrix factorization to
obtain overall sources of variability via a limited number of inferred
factors and identifies shared versus exclusive variation across mul-
tiple omic data sets55. Eight latent factors were identified (minimum
explained variance ≥2%; see “Methods” section), with the plasma
metabolome and GM explaining 37.12% and 17.49% of the overall
sample variability, respectively (Fig. 4a). Based on significance and
the proportion of total variance explained by individual factors for
each omic assay, Factors 1 (R2 = 11.98) and 6 (R2 = 5.28) captured the
greatest covariation between the two omic layers (Fig. 4a; Supple-
mentary Table S5). In contrast, Factors 2 and 5 were nearly exclusive
to the metabolome, and factors 3 and 4 to the GM. Interestingly,
Factor 1 was significantly negatively correlated to dietary protein
intake (Spearman rho = −0.270, p.adj = 0.021; Fig. 4b) and captured
the variation associated with the CR diet (Wilcoxon rank-sum test,
p.adj = 3.2e-04; Fig. 4c). Factor 6 had the greatest number of sig-
nificant correlations, including negative associations with visceral
adipose tissue, waist circumference, body weight, BMI, fat mass,
android fat, subcutaneous adipose tissue, dietary sodium, carbohy-
drate, fat, energy intake (kcal), and sugar (Spearman rho ≤ −0.220,
p.adj ≤ 0.075) and captured the variation associated with IF-P (Wil-
coxon rank-sum test, p.adj = 0.007).

Assessing the positive weights (feature importance) of Factor 1
revealed a microbial and metabolomic signature linked with CR,
including the taxa Faecalibacterium, Romboutsia, and Roseburia, and
the plasma metabolites myoinositol, agmatine, N-acetylglutamine,
erythrose, and mucic acid (Fig. 4d). Previous dietary restriction
studies have reported co-occurrence of gut microbial taxa and
plasma metabolites that span a wide variety of applications and
investigations56. The specific co-occurrences observed in Factor 1

exhibited an abundance of butyrate-producing bacterial taxa that
utilize carbohydrates as their predominant substrate and plasma
metabolites that are generally involved in carbohydratemetabolism,
such as erythrose, an intermediate in the pentose phosphate path-
way (PPP), and mucic acid which is derived from galactose and/or
galactose-containing compounds (i.e., lactose). These co-
occurrence patterns biologically cohere considering the nutritional
profile of the CR group and the large contribution of fiber-rich,
unrefined carbohydrates and reduction in sugar (~50% kcal from
sugar). Indeed, these nutritional changes may have influenced the
GM to accommodate changes in dietary substrate more efficiently.
One interesting co-occurrence was the genus Romboutsia and
metabolite N-acetylglutamine. Romboutsia has been shown to pro-
duce several SCFAs and ferment certain amino acids, including
glutamate57. N-acetylglutamine is biosynthesized from glutamate;
thus, its co-occurrence with the abundance of Romboutsia
encourages further exploration into this interaction58.

Factor 6 captured the signature associated with IF-P, with
positive contributions from the taxa Incertae Sedis (Ruminococca-
ceae family), Erysipelatoclostridium, Christensenellaceae R-7 group,
Oscillospiraceae UCG-002, and Alistipes, and the plasma metabolites
malonic acid, adipic acid, succinate, methylmalonic acid, and mucic
acid (Fig. 4d). Prior work has established thatAlistipes increases from
diets rich in protein and fat, and contributes to the highest number
of putrefaction pathways (i.e., fermentation of undigested proteins
in the GI tract) over the other commensals59. This could explain the
co-occurrence of plasma metabolites from protein catabolism, such
as 2-aminoadipid acid, adipic acid, and glutamic acid22,59. Oscillos-
piraceae has recently been viewed with next-generation probiotic
potential, harboring positive regulatory effects in areas related to
obesity and chronic inflammation60. Mentioned prior, recent studies
have reported on the role of Christensenellaceae on human health,
participating in host amino acid and lipid metabolism as well as fiber
fermentation20, with Christensenellaceae R-7 group notably evi-
denced to correlate with visceral adipose tissue reduction22. As such,
the elevated abundance of microbes in the GM of IF-P participants
observed in this study in tandem with the co-occurrence of meta-
bolites indicative of protein degradation and mobilization and oxi-
dation of fatty acids, such as methylmalonic acid, malonic acid, and
succinate, presents a nascent multi-omic signature of IF-P. In addi-
tion, and more pronounced in the IF-P vs CR group, participants
decreased sugar intake by ~75% (kcals) compared to baseline levels.
Considering the other regimental components of IF-P, the differ-
ences in multi-omic signatures likely display the selective pressures
of these two interventions.

Gut microbiome (GM) composition is associated with weight
loss (WL) responsiveness to IF-P diet
The IF-P intervention produced a microbiome and metabolomic
response; however, the loss in bodyweight and fat across individuals
varied (Fig. 5a). To provide deeper characterization and explore
differential features of WL responsiveness, we performed a GM-
focused subgroup analysis by employing shotgun metagenomic and
untargeted fecal metabolomic surveys in 10 individuals that either
achieved ≥10% loss in body weight or bordered on clinically impor-
tant WL (i.e., >5% BW; herein, ‘High’ and ‘Low’ responders)61.
Importantly, baseline characteristics between WL responder classi-
fication did not differ significantly (baseline body weight: High,
108.9 ± 30.8 vs. Low, 81.9 ± 18.1 kg, p = 0.117; Supplementary
Table S6). Assessing the GM at the fundamental taxonomic rank,
species composition showed significant separation by weight loss
response evaluated by Bray-Curtis dissimilarity (group × time:
R2 = 0.114, p = 0.001; Fig. 5b; Supplementary Table S7), with most of
the variation explained by the individual (R2 = 0.711, p = 0.001). In
comparison, species level alpha diversity did not differ significantly
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between classifications (group × time: p ≥ 0.674; Fig. 5c, d). Identi-
fying 212 species after filtering, we noted significant differences in
bacterial abundances between groups over time (Fig. 5e; Supple-
mentary Data 8). A total of 10 features increased in the High-
responder group relative to the Low-response group over the eight-
week study period, including Collinsella SGB14861, Clostridium lep-
tum, Blautia hydrogenotrophica, and less typified species; GGB74510
SGB47635 (unclassified Firmicutes), GGB3511 SGB4688 (unclassified
Firmicutes), Faecalicatena contorta, Lachnospiraceae bacterium NSJ-
29, Phascolarctobacterium SGB4573, GGB38744 SGB14842 (unclassi-
fied Oscillospiraceae), and Massiliimalia timonensis (effect size ≥
1.163, p.adj ≤0.092). The increase in Collinsella, a less characterized
anaerobic pathobiont that produces lactate and has been associated
with low-fiber intakes62,63 and lipid metabolism64, may have been
related to the periods of CR and IF, in conjunction with the greater
influx of host-released fatty acids in the High-responder
group. Relatedly, Clostridium leptum growth has been linked with
increases in monounsaturated fat intake, reductions in blood
cholesterol65, and stimulation of Treg induction (i.e., anti-

inflammatory)66. The latter association is relevant to the SCFA-
promoting (primarily butyrate) qualities of Clostridium leptum67.
Blautia hydrogenotrophica, an acetogenwith bidirectionalmetabolic
cross-feeding properties (e.g., transfer of hydrogen and acetate), is
also important for butyrate formation68. Taxa that decreased relative
to the Low-responder group; Eubacterium ventriosum, Streptococcus
salivarius, Eubacterium rectale, Anaerostipes hadrus, Roseburia inu-
linivorans, Mediterraneibacter glycyrrhizinilyticus, and Blautia mas-
siliensis (effect size ≤ −1.690, p.adj ≤ 0.078), included butyrate
producers, Eubacterium ventriosum, Eubacterium rectale, Roseburia
inulinivorans, and others, such as Streptococcus salivarius, a
nuclear factor kappa B (NF-κB) activity repressor69 and Peroxisome
proliferator-activated receptor gamma (PPARγ) inhibitor potentially
influencing lipid and glucose metabolism70. Investigating
monozygotic (MZ) twin pairs, Eubacterium ventriosum was more
abundant in the higher BMI siblings26, with enhanced scavenging
fermentation capabilities71. Roseburia inulinivorans is a mobile fir-
micute (flagella) that harbors a wide-ranging enzymatic repertoire
able to act on various dietary polysaccharide substrates suggestive
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Fig. 4 | Factors derived fromthe integrationof the gutmicrobiome and plasma
metabolome. a The cumulative proportion of total variance explained (R2) and
proportion of total variance explained by eight individual latent factors for each
omic layer. b Spearman correlation matrix of the eight latent factors and clinical
anthropometric and dietary covariates. Each circle represents a separate associa-
tion, with the size indicating the significance (-log10 (p-values)) and the color
representing the effect size (hue) with its direction (red: positive; blue: negative).
All correlations are calculated using two-sided tests. Asteriskswithin a circle denote
significance after adjustment with the Benjamini–Hochberg method. c Scatter plot

of Factors 1 and6,with eachdot representing a sample coloredby intervention. Box
and whisker plots illustrate significant differences between groups after adjusting
for multiple testing using the Benjamini–Hochberg method (Wilcoxon rank-sum
test; top = Factor 1, p.adj = 3.2e-04; right = Factor 6, p.adj = 0.007). The plots show
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CR: n = 19. Source data are provided as a Source Data file.
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of the ability to respond to the availability of alternative dietary
substrates72. While we noted a more variable shift in fecal total
SCFAs, acetate, propionate, butyrate, or valerate (via targeted
GC–MS), in the Low weight loss responders, there was no significant
difference when compared to High weight loss responders (Wil-
coxon rank-sum test, p ≥0.210; Supplementaryl Fig. S4a; Supple-
mentary Data 9).

Less affected compared to taxonomic features were the 275
microbial-affiliated metabolic pathways identified after filtering, of
which gluconeogenesis III and guanosine ribonucleotides de novo
biosynthesis were increased (effect size ≥0.108, p.adj = 0.079), while
super pathway of L-alanine biosynthesis, sucrose degradation IV
(sucrose phosphorylase), sucrose degradation III (sucrose inver-
tase), super pathway of thiamine diphosphate biosynthesis III, and
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flavin biosynthesis I (bacteria and plants) were decreased in the High
relative to the Lowweight loss responder group (effect size ≤ −0.247,
p.adj ≤ 0.079; Fig. 5f; Supplementary Data 10)

As the difference in microbial shifts versus function is well
established, we also tracked the fecal metabolome to better under-
stand metabolic modification/production and identify potential
microbial metabolic targets for future weight loss interventions.
Overall, we reliably detected (QC relative standarddeviation > 20% and
mean intensity value > 1000 in 80% of samples) and annotated 607
(Human Metabolome Database) compounds across fecal samples.
Notably, we found the fecal metabolite profile of both subgroups
abundant in amino acids, peptides, and analogs, with decreases in
sulfates, furanones, and quaternary ammonium salts and increases in
cholestane steroids, carboxylic acid derivatives, and imidazoles
(Fig. 5g). Assessing metabolite changes between groups did not yield
significance when comparing logFC values (Wilcoxon rank-sum test,
p.adj > 0.10; Supplementary Fig. S4b). Pathway analysis of High weight
loss responders revealed prominent metabolic signatures relevant to
lipid metabolism (glycerolipid and arachidonic metabolism), nucleo-
tide turnover (pyrimidine metabolism), and aromatic amino acid for-
mation (phenylalanine, tyrosine, and tryptophan biosynthesis; Fig. 5h,
Supplementary Data 11). In comparison, the more prominent enriched
pathways for Low weight loss responders included those related to
amino acid and peptide metabolism (glycine, serine, and threonine,
d-glutamine and d-glutamate, and tyrosine metabolism and arginine
biosynthesis; Fig. 5i, Supplementary Data 12).

Finally, species captured by our differential abundance analysis
were channeled into a GFLASSO model with the fecal metabolome
library to select metabolically relevant compounds best predicted by
microbial abundances. Restricting taxa and metabolites displaying
stronger co-occurrence signals (GFLASSO coefficients > 0.02), we
noted several patterns (Fig. 5j). This included positive associations
between GGB3511 SGB4688 (unclassified Firmicute) and malonic acid
(important to fatty acidmetabolism), as well asRoseburia inulinivorans
and 3-Hydroxy-2-oxo-1H-indole-3-acetic acid. Negative associations
included Phascolarctobacterium SGB4573 with the fatty acid ester,
methyl sorbate, and Streptococcus salivarius (anti-inflammatory) with
leukotriene B4 dimethylamide.

Differences detected in our subgroup analysis suggest that the
GM composition plays a role in WL responsiveness during IF-P inter-
ventions. Notable differences in taxa and fecal metabolites suggest
differing substrate utilization capabilities and nutrient-acquiring
pathways between High and Low responders, despite being on the
same dietary regimen. Although differences between High and Low
responders were statistically significant for the microbiome data, the
magnitude of differences varied, suggesting further research is needed
to clarify these differences.

Long-term IF-P remodels the gut microbiome after substantial
weight loss – A case study
Considering the microbiomic and metabolic importance of sustained
WL, we additionally performed a longitudinal, exploratory case study

analysis on the participant who lost the most body weight during the
eight-week WL period (−15.3%BW, −24.9 kg). Under rigorous clinical
supervision, this individual was guided through and comprehensively
tracked over 52 weeks, strictly adhering to an IF-P regimen, including
WL (0–16 weeks) and maintenance (16–52 weeks) periods, which
included adjusting the calorie intake to maintain energy balance.
Microbial richness and evenness at the species level displayed a gen-
eral inverse trend with body weight reduction, although they con-
verged at 52 weeks (Fig. 6a, b). Species dissimilarity peaked at weeks
four and 16, after which it plateaued, but remained consistently higher
in comparison to baseline over the 52-week period (Fig. 6c). Examining
positive linear coefficients of a PERMANOVA model, constructed to
detect variation between community compositions over time, domi-
nant influences included several species within the Lachnospiraceae
family such as Fusicatenibacter saccharivorans, Blautia wexlerae,
Blautia massillensis, Anaerostipes hadrus, and Coprococcus comes and
others like Akkermansia muciniphila (Fig. 6d). Negative contributions
included species from the Oscillospiraceae family, such as Rumino-
coccus bromii and Ruminococcus torques. Indeed, visualizing commu-
nity composition over the sampling time points suggested specific GM
remodeling (Fig. 6e; Supplementary Data 13). Many keystone taxa
prominent over time in the microbiome are highly relevant to the
significant reduction in body weight and metabolic improvement of
the case-study participant. For example, Blautia wexlerae, a com-
mensal bacterium recently reported to confer anti-adipogenesis and
anti-inflammatory properties to adipocytes73 became visually more
prominent over time. This association was also the case for the health-
associated microbe, Anaerostipes hadrus, which converts inositol ste-
reoisomers (including myoinositol) to propionate and acetate, apt to
improve insulin sensitivity and reduce serum triglyceride levels74,
translating to reduced host metabolic disease risk75. Other elevated
taxa, like the mucin-degrading Akkermansia muciniphila and Bacter-
oides faecis, are negatively correlated with markers for insulin
resistance76. There was also a notable bloom of Collinsella SGB14861
(anaerobic pathobiont producing lactate)63 and suppression of
Eubacterium rectale, Ruminococcus torques (associated with circadian
rhythmdisruption inmice)77, andRuminococcus bromii (an exceptional
starch degrader)78.

Compared to the more pronounced shifts in the GM, an inspec-
tion of Bray-Curtis dissimilarity at the microbial metabolic pathway
levelwasmuch less affected (Supplementary Fig. S5a). Thoughpositive
contributions in multiple biosynthesis pathways were noted, as well as
reductions in the superpathway of UDP-glucose-derived O-antigen
building blocks biosynthesis and glucose and glucose-1-phosphate
degradation (Supplementary Fig. S5b; Supplementary Data 14). We
also tracked the fecal metabolome concordance with the GM to cor-
roborate potentialmetabolic output. Shifts inmetabolites captured by
calculating the Canberra distance were prominent (Fig. 6f), with
positive influences from agrocybin (possessing antifungal activity79),
nicotinic acid (nicotinamide adenine dinucleotide precursor), and
sulfate, and reductions in cadaverine (involved in the inhibition of
intestinal motility80), maltitol, acetohydroxamic acid (a urease

Fig. 5 | Gut microbiome composition and metabolic differences in weight loss
responsiveness to a IF-P diet. a Relative weight loss over the eight-week inter-
vention for each participant in the IF-P group. b NMDS ordination showed the
personalized trajectories of participants’ microbiomes over time. Dotted lines
connect the same individual and point toward the final sample collection. No sig-
nificant time or group × time interaction effects for alpha diversity metrics,
c observed species, and d the Shannon index. Box and whiskers plots display the
box ranging from the first to the third quartile, and the center the median value,
while the whiskers extend from each quartile to the minimum or maximum values.
Volcano plots displaying differential abundance betweenHigh and Lowweight loss
responders for e microbial species and f functional pathways. Significant features
were more enriched in High and Low weight loss responders colored orange and

light blue, respectively. g Alluvial plot displaying the fecal metabolite profile at the
subclass level (Human Microbiome Database). Most abundant metabolite sub-
classes displayed (i.e., ≥1%). Metabolome pathway analysis for h High and i Low
weight loss responders using all reliablydetected fecalmetabolites showing altered
pathways with moderate and above impact (>0.10). Impact was calculated using a
hypergeometric test, while significance was determined using a test of relative
betweenness centrality. j Grid-fused least absolute shrinkage and selection opera-
tor (GFLASSO) regression of species fromdifferential abundance analysis displayed
correlative relationships with fecal metabolites. Species with greater abundance in
High (High > Low) and Low (Low >High) weight loss responders are separate‘. For
all panels, High: n = 5, Low: n = 5. Source data are provided as a Source Data file.
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inhibitor), and hypoxanthine, after removing the dominant amino acid
subclass (Fig. 6g; Supplementary Fig. S5c). At the chemical class level,
we observed apparent shifts in chemical subclasses; cholestane ster-
oids, amines, purines, and purine derivatives, and amino acids, pep-
tides, and analogs (Supplementary Fig. S5d). Given our case-study
approach, we performed a pathway analysis using all reliably detected
fecal metabolites at each collection point over 52 weeks. Pathway
analysis (Fig. 6h) identified primary bile acid biosynthesis (p =0.014)
and cysteine and methionine metabolism (p =0.096) as having the

greatest significance, while the greatest impact (I) was observed in
phenylalanine, tyrosine, and tryptophan biosynthesis and linoleic acid
metabolism (I = 1.0). Alanine, aspartate, and glutamate metabolism
(I = 0.756), vitamin B6 metabolism (I = 0.647), sulfur metabolism
(I = 0.532), phenylalanine metabolism (I = 0.357), and nicotinate and
nicotinamide metabolism (I =0.194) also displayed marked pathway
impacts (Supplementary Fig. S5e; Supplementary Data 15). Together,
these integrated findings from the group comparisons (IF-P vs. CR),
high vs. low responders, and the case study, suggest that the
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Fig. 6 | Survey of a case-study participant’s gut microbiome over a year-long
period on an IF-P weight loss and maintenance regimen. Change in alpha
diversity metrics a observed species and b Shannon index with percentage of
baseline body weight. c Bray-Curtis dissimilarity at the species level with d top
PERMANOVA model coefficients (analysis: species~time). e Alluvial plot displaying
the variation in abundance of the 20 most prevalent bacteria over time. For visual
clarity, the less abundant taxa are not displayed. f Canberra distance of fecal

metabolome with g top PERMANOVA model coefficients (analysis: pathway~time).
h Pathway analysis of fecal metabolites comparing baseline to subsequent sample
collections. Data are plotted as -log10(p) versus pathway impact. Node size corre-
sponds to the proportion of metabolites captured in each pathway set, while node
color signifies significance. Impact was calculated using a hypergeometric test,
while significance was determined using a test of relative betweenness centrality.
No p-value adjustments weremade. Source data are provided as a Source Data file.
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remodeling of the gut microbiome through sustained weight loss on
an IF-P regimen not only alters the microbial composition but also
influences key metabolic pathways and output, reflective of fat mobi-
lization and metabolic improvement.

Discussion
Our study demonstrates distinct effects of IF-P on gut symptomatol-
ogy and microbiome, as well as circulating metabolites compared to
continuousCR.Weobserved significant changes in theGMresponse to
both interventions; however, the IF-P group exhibited a more pro-
nounced community shift and greater divergence from baseline (i.e.,
intra-individual Bray-Curtis dissimilarities). This shift was character-
ized by increased specific microbial families and genera, such as
Christensenellaceae, Rikenellaceae, and Marvinbryantia, associated
with favorable metabolic profiles. Furthermore, IF-P significantly
increased circulating cytokine concentrations of IL-4, IL-6, IL-8, and IL-
13. These cytokines have been linked to lipolysis, WL, inflammation,
and immune response. The plasma metabolome analysis revealed
distinct metabolite signatures in IF-P and CR groups, with the con-
vergence ofmultiplemetabolic pathways. These findings shed light on
the differential effects of IF regimens, including IF-P as a promising
dietary intervention for obesity management and microbiotic and
metabolic health.

While acknowledging individual contributions of WL, protein
pacing, and IF, we propose that the beneficial shifts observed may be
best characterized as the culmination of features inherent in our IF-P
approach. For example, it is possible that microbial competition is
leveraged during reduced and intermittent nutritional input periods,
emphasizing nutrient composition and foodmatrix type (combination
of whole food and meal replacements vs. primarily whole food),
affecting available substrates for gut microbes. IF-P participants’ fiber
intake was concentrated in fiber-rich (RS5 type) shakes, offering
immediate availability of fiber to the GI tract. In contrast, CR partici-
pants consumed fiber through whole foods, leading to a slower
digestion and absorption process influenced by individual digestive
transit times and enzymatic profiles. This nutritional environmentmay
create ecological niches that support symbiont microbial commu-
nities. In this investigation, we provide support of such remodeling,
with intentional fasting and increased relative protein (protein pacing)
consumption well-validated to improve body composition and meta-
bolism during weight loss7,8,15. Our results align with previous studies
on CR, where greater relative protein intake was associated with an
increased abundance of Christensenella81. This increase is likely a result
of increased amino acid-derived metabolites21. We also observed
increased signatures of amino acid metabolism in the GM of IF-P par-
ticipants, which may be attributed to increased nitrogen availability,
prompting de novo amino acid biosynthesis. The liquid format of two
of the daily meals and precise timing of high-quality protein con-
sumption (Protein Pacing) in the IF-P regimen may have influenced
these results, as amino acids play essential roles in microbial com-
munities, acting as energy andnitrogen sources and essential nutrients
for amino acid auxotrophs.

In addition to the differences in nutrient composition, the IF-P
group exhibited a profound reduction (33%) in visceral fat15. This
reduction is significant because visceral fat is highly correlated with
GM. While the specific influence of GM on fat depots in our study
remains unclear, the shift in cytokine profile and metabolic pathways
suggests an interaction between GM and fat metabolism. Regarding
GM-host interaction, we did not detect changes in gut permeability
assaying LBP. However, correlations were found with cytokines IL-4
and IL-13 and microbes Colidextribacter (negative association) and
Ruminoccus gauveauii group (positive association). These associations
may reflect the direct impact of the dietary intervention, yet they also
hint at a deeper crosstalk within the gut-immune axis. This crosstalk is
known to play a pivotal role in modulating host inflammation and

influencing adipose tissue signaling pathways42. Furthermore, the
observed microbial shifts, including changes in populations of Chris-
tensenella, suggest a nuanced role for certain microbes in regulating
metabolic health. Notably, certain strains of Christensenella have been
implicated in the regulation of key metabolic markers, such as glyce-
mia and leptin levels, and in promoting hepatic fat oxidation82.

Our findings also underscore that GM composition plays a role in
WL responsiveness during IF-P interventions. Subgroup analysis based
on WL responsiveness revealed significant differences in species
composition at the taxonomic level. The High-responder group
showed an increased abundance of certain bacteria associated with
metabolic benefits and anti-inflammatory effects. In contrast, the Low-
responder group exhibited an increased abundance of butyrate-
producing and nutritionally adaptive species (e.g., Eubacterium
ventriosum71 and Roseburia inulinivorans72). Fecalmetabolome analysis
further highlighted differences between the two subgroups, with dis-
tinct metabolic signatures and enrichment in specific metabolic
pathways. Notably, the High WL responders displayed enrichment of
fecal metabolites involved in lipid metabolism. In contrast, Low
responders were more prominent in pathways related to the meta-
bolism of amino acids and peptides, including glycine, serine, and
threonine, d-glutamine, and d-glutamate, as well as tyrosine metabo-
lism and arginine biosynthesis. The lattermetabolic signature has been
reported in individuals with severe obesity undergoing high-protein,
low-calorie diets83. As both High and Low WL responders were con-
suming the same diet, our results suggest differences in GM compo-
sition and metabolism, which could play a role in determining the
success of an IF-P regimen. Though, as these enrichment analyses were
performed in an exploratory manner, we acknowledge the need for a
more systematic approach to validate these findings.

Finally, we provide evidence of long-term GM stabilization from
these changes by following one individual over 12 months. Dietary
restriction is widely used to reduce fat mass and weight in individuals
with or without obesity; however, weight regain after such periods
presents a critical challenge, and the underlying homeostatic
mechanisms remain largely elusive. Notably, keystone taxa that
became more prominent over time were associated with anti-adipo-
genesis, improved insulin sensitivity, and reduced metabolic disease
risk. The microbial shifts were accompanied by noticeable changes in
the fecal metabolome, with shifts in various metabolites and chemical
subclasses. Pathway analysis identified impacts on primary bile acid
biosynthesis, cysteine and methionine metabolism, and other fat
mobilization andmetabolic improvement pathways. These shifts were
accompanied by noticeable changes in the fecal metabolome, parti-
cularly in metabolites and chemical subclasses related to lipid meta-
bolism, nucleotide turnover, and aromatic amino acid formation.

Despite the valuable insights from our study on the complex
interactions between intermittent fasting, higher protein intake using
protein pacing, the GM, and circulating metabolites in obese indivi-
duals, several limitations should be acknowledged. First, our reliance
on fecal samples to represent the GM may have overlooked potential
microbial populations in the upper GI tract. Including samples from
proximal regions in future studies would provide a more compre-
hensive understanding of the gut microbiome’s response to IF-P and
CR. In addition, the sample size for our studywasdetermined based on
the primary outcomes related to body weight and composition from
theparent study15. This sample sizemay have reduced statistical power
and potentially amplified individual variability among participants.
However, it is important to note that the smaller RCT design allowed
for more precise control over diet and lifestyle factors, minimizing
potential confounding influences on the study outcomes. Further-
more, the study’s duration was limited to eight weeks, which pre-
vented potential insights into the differential long-term effects
between the two interventions. However, we were able to extend the
follow-up duration and conduct periodic assessments for a year in our
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case-study participant, offering a more comprehensive understanding
of the sustainability of the observed changes and the potential for
weight regain for IF-P. The current study compared a combination of
whole food and supplements (shakes and bars; IF-P) versus primarily
whole food (CR), which together with variations in protein and fiber
content and type may have influenced the gut symptomatology and
nutrient absorption between groups. Additionally, study participants
self-reported dietary intake daily, although therewas closemonitoring
of intake through the return of empty food packaging/containers of
consumed food and daily monitoring by investigators and weekly
meetings with a registered dietitian. Overall, knowledge gaps are
present in this research, including how the microbiome is rebuilt after
food reintroduction and how overall caloric restriction and specific
macronutrients contribute to this process. However, considering the
multifactorial nature of weight loss and metabolic health, our work
represents an important precedent for future work. Future investiga-
tors should consider integrating these factors to provide a more
comprehensive understanding of the underlying mechanisms. Addi-
tional research is warranted to characterize themetabolic signature of
IF-P, the time relationship between these fasting periods, and the
analysis of these metabolic changes. A strength of our High-Low-
responder and case-study analyses is the hypothesis-driving nature of
the findings, from which targeted microbiome and/or precision
nutrition interventions can be designed and tested.

In conclusion, our study provides valuable insights into the
complex interactions among intermittent fasting and protein pacing,
the GM, and circulating metabolites in individuals with obesity. Spe-
cifically, intermittent fasting - protein pacing significantly reduces gut
symptomatology and increases gut microbes associated with a lean
phenotype (Christensenella) and circulating cytokines mediating total
body weight and fat loss. These findings highlight the importance of
personalized approaches in tailoring dietary interventions for optimal
weightmanagement andmetabolic health outcomes. Further research
is necessary to elucidate the underlying mechanisms driving these
associations and to explore the therapeutic implications for develop-
ing personalized strategies in obesity management. Additionally,
future studies should consider investigating microbial populations in
upper GI sections and potential intestinal tissue remodeling to gain a
more comprehensive understanding of the gut microbiome’s role in
these interventions.

Methods
Study design and participants
The protocol of the clinical trial was registered on March 6, 2020
(Clinicaltrials.gov; NCT04327141), and the results of the primary
analysis have been published previously15. Briefly, participants were
recruited from Saratoga Springs, NY, and were provided informed
written consent in accordance with the Skidmore College Human
Subjects Institutional Review Board before participation (IRB#: 1911-
859), including consent for the use of samples and data from the
current study. Each procedure performed was in adherence with
New York state regulations and the Federal Wide Assurance, which
follows the National Commission for the Protection of Human Sub-
jects of Biomedical and Behavioral Research, and in agreement with
the Helsinki Declaration (revised in 1983). Their physicians per-
formed a comprehensive medical examination/history assessment
to rule out any current cardiovascular or metabolic disease. For at
least six months before the start of the study, all eligible participants
were either sedentary or lightly active (<30min, two days/week of
organized physical activity), with overweight or obesity (BMI > 27.5
kg/m2; % body fat > 30%), weight stable (±2 kg), and middle-aged
(30–65 years). In addition, participants taking antibiotics, anti-
fungals, or probiotics within the previous two months were exclu-
ded. Enrolled participants were matched for body weight, BMI,
and body fat and randomly assigned to one of two groups: (a) IF-P

(n = 21; 14 women; 7 men) or (b) CR (n = 20; 12 women; 8 men) for
eight weeks. During a one-week run-in period, subjects maintained
a stable body weight by consuming a similar caloric intake as their
pre-enrollment caloric intake while maintaining their sedentary
lifestyle. This was confirmed by matching their pre-enrollment
dietary intake to the one-week run-in diet period15. Following base-
line testing, participants were provided detailed instructions on
their weight loss dietary regimen (Supplementary Table S1) and
received weekly dietary counseling and compliance/adherence
monitoring from the research team via daily food records, and
weekly registered dietitian meetings, along with weekly visits to the
Human Nutrition and Metabolism laboratory at Skidmore College
(Saratoga Springs, NY) for meal distribution and empty packet/
container returns. All outcome variables were assessed pre (week 0),
mid (week 4), and post (week 8). All participants were compensated
$100 for successful completion of the study and received an addi-
tional monthly stipend of $75 for groceries (CR group only) or up to
two meals per day of food supplements and meal replacements
(IF-P only).

IF days consisted of ~350–550 kcals per day, in which partici-
pants were provided a variety of supplements and snacks. Protein
pacing (P) days for IF-P consisted of four and five meals/day for
women and men, respectively, two of which (breakfast and one
other meal) were liquid meal replacement shakes with added whole
foods (Whole Blend IsaLean® Shakes, 350/400 kcals, 30/36 g of
protein/meal, 9 g of fiber); a whole food evening dinner meal (450/
500 kcals men), an afternoon snack (200 kcals, men only), and an
evening protein snack (IsaLean® or IsaPro® Shake or IsaLean Whole
Blend® Bar; 200–250 kcals). This dietary regimen provided
1350–1500 and 1700–1850 kcals/day for women and men, respec-
tively, and a macronutrient distribution targeting 35% protein, 35%
carbohydrate, 20–30 g/day of fiber, and 30% fat. Isagenix Interna-
tional, LLC (Gilbert, AZ, USA) provided all meal replacement shakes,
bars, beverages, and supplements. In comparison, participants
assigned to the CR diet followed specific guidelines of the National
Cholesterol Education Program Therapeutics Lifestyle Changes
(TLC) diet of the American Heart Association with a strong Medi-
terranean diet influence of a variety of fresh vegetables, fruits, nuts,
and legumes. The specific macronutrient distribution recom-
mended was <35% of kcal as fat; 50%–60% of kcal as carbohydrates;
15% kcal as protein; <200mg/dL of dietary cholesterol; and 20–30 g/
day of fiber. The total calorie intake was 1200 and 1500 calories
per day for women and men, respectively, during the 8-week weight
loss intervention. In addition to weekly meetings with the registered
dietitian and daily contact with research team members, subjects
were provided detailed written instructions for their meal plans.
They were closely monitored through daily participant-researcher
communication (e.g., email, text, and mobile phone), two-day food
diary analysis, weekly dietary intake journal inspections, weekly
meal/supplement container distribution, and returning empty
packets and containers.

Gastrointestinal (GI) symptom rating scale
Participants completed the 15-question GI symptom rating scale
(GSRS)84 at baseline, week four, and week eight. Briefly, each question
is rated on a 7-point Likert scale (1 = absent; 2 =minor; 3 =mild;
4 =moderate; 5 =moderately severe; 6 = severe and 7 = very severe)
and recalled from the previous week. Questions include symptoms
related to upper abdominal pain, heartburn, regurgitation (acid
reflux), empty feeling in the stomach, nausea, abdominal rumbling,
bloating, belching, flatulence, and questions on defecation. The GSRS
questionnaire provides explanations of each symptom, is under-
standable, and has reproducibility for measuring the presence of GI
symptoms85. In our analysis, a score of ≥2 (minor) was defined as
symptom presence, and a score≥ 4 (moderate) was defined as
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moderate symptom presence. Furthermore, to better categorize
symptom location, bloating, flatulence, constipation, diarrhea, stool
consistency, defecation urgency, and sensation of not completely
emptying bowels were classified as lower GI symptoms, and nausea,
heartburn, regurgitation, upper abdominal pain, empty feeling in the
stomach, stomach rumbling, and belching was classified as upper GI
symptoms. Total scores were also generated for overall symptom and
moderate symptom presence.

Fecal sample collection and DNA extraction
Participants were instructed to provide stool samples at baseline,
week four, and week eight of the intervention. The case-study par-
ticipant additionally provided samples at weeks 12, 16, 32, and 52.
The entire bowel movement was collected and transported within
24 h of defecation to the Skidmore College Human Nutrition and
Metabolism (Saratoga Springs, NY) laboratory using a cooler and ice
packs and frozen at −80 °C. Samples were then sent to ASU (Phoenix,
AZ) overnight on dry ice for analysis, where they were thawed at 4 °C
and processed. Wet weight was recorded to the nearest 0.01 g after
subtracting the weight of fecal collection materials. Stool samples
were then rated according to the BSS86, homogenized in a stomacher
bag, and the pH was measured (Symphony SB70P, VWR Interna-
tional, LLC., Radnor, PA, USA). Next, the extraction of DNA was
performed using the DNeasy PowerSoil Pro Kit (Cat. No. 47016,
Qiagen, Germantown, MD) per themanufacturer’s instructions. DNA
concentration and quality were quantified using the NanoDrop™
OneCMicrovolumeUV-Vis Spectrophotometer (Thermo Scientific™,
Waltham, MA) according to manufacturer instructions. The OD260/
OD280 ratio of all samples was ≥1.80 (demonstrating DNA purity).

Quantification of bacterial 16S rRNA genes
To estimate total bacterial biomass per sample (16S rRNA gene copies
per gram of wet stool), DNA extracted from the fecal collections was
assessed via quantitative polymerase chain reaction (qPCR) based on
previously published methods87,88. Briefly, all 20μL qPCR reactions
contained 10 uL of 2X SYBR Premix Ex Taq™ (Tli RNase H Plus) (Takara
BioUSA, Inc., San Jose, CA,USA), 0.3μM(0.6μL) of eachprimer (926 F:
AAACTCAAAKGAATTGACGG; 1062 R: CTCACRRCACGAGCTGAC),
2μL DNA template (or PCR-grade water as negative control), and
6.8μL nuclease-free water (Thermo Fisher Scientific, Waltham, MA,
USA). PCR thermal cycling conditions were as follows: 95 °C for 5min,
followedby 35 cycles of 95 °C for 15 s, 61.5 °C for 15 s, and 72 °C for 20 s,
then hold at 72 °C for 5min, along with a melt curve of 95 °C for 15 s,
60 °C for 1min, then 95 °C for 1 s. Quantification was performed using
a QuantStudio3™ Real-Time PCR System by Applied Biosystems with
QuantStudio Design and Analysis Software 1.2 from Thermo Fisher
Scientific (Waltham, MA, USA). All samples were analyzed in technical
replicates. For quality assurance and quality control, molecular nega-
tive template controls (NTC) consisting of PCR-grade water (Invitro-
gen, Waltham, MA, USA) and positive controls created by linearized
plasmids were run on every qPCR plate. Standard curves were run-in
triplicate and used for sample quantification, ranging from 107 to 101

copies/μL with a cycle threshold (CT) detection limit cutoff of 33.
Reaction efficiency was approximately 101%, with a slope of −3.29
and R2 ≥0.99.

Fecal microbiome analysis
Amplification of the 16S rRNA gene sequence was completed in tri-
plicate PCRs using 96-well plates. Barcoded universal forward 515 F
primers and 806 R reverse primers containing Illumina adapter
sequences, which target the highly conserved V4 region, were used
to amplify microbial DNA89,90. PCR, amplicon cleaning, and quanti-
ficationwere performed as previously outlined90. Equimolar ratios of
amplicons from individual samples were pooled together before
sequencing on the Illumina platform (Illumina MiSeq instrument,

Illumina, Inc., San Diego, CA). Raw Illumina microbial data were
cleaned by removing short and long sequences, sequences with
primer mismatches, uncorrectable barcodes, and ambiguous bases
using the Quantitative Insights into Microbial Ecology 2 (QIIME2)
software, version 2021.891.

16S rRNA sequencing produced 7,366,128 reads with a median of
53,776 per sample (range: 9512–470,848). Paired-end, demultiplexed
data were imported and analyzed using QIIME2 software. Upon
examination of sequence quality plots, base pairs were trimmed at
position 20 and truncated at position 240 and were run through
DADA2 to remove low-quality regions and construct a feature table
using ASVs. Next, the ASV feature table was passed through the
feature-classifier plugin92, which was implemented using a naive Bayes
machine-learning classifier, pre-trained to discern taxonomy mapped
to the latest version of the rRNA database SILVA (138.1; 99% ASVs from
515 F/806R region of sequences)93. Based on an assessment of alpha
rarefaction, a threshold of 6500 sequences/sample was established,
retaining all samples for downstream analysis. A phylogenic tree was
then constructed using the fragment-insertion plugin with SILVA at a
p-sampling depth of the rarefaction threshold to impute high-quality
reads and normalize for uneven sequencing depth between samples94.
Alpha diversity (intra-community diversity) was measured using
observed ASVs and the Phylogenetic diversity index. Additionally, the
Shannon index was calculated for the subgroup and case-study ana-
lyses to capture richness and evenness at the species level. Beta
diversity (inter-community diversity) was measured using Bray-Curtis
dissimilarity.

For shotgun metagenomics, DNA was sequenced on the Illumina
NextSeq 500 platform (Illumina, CA, USA) to generate 2 × 150 bp
paired-end reads at greater sequencing depth with a minimum of 10
million reads. Raw Illumina sequencing reads underwent standard
quality control with FastQC. Adapterswere trimmedusingTrimGalore.
DNA sequences were aligned to Hg38 using bowtie295. DNA sequences
were then analyzed via the bio bakery pipeline96 for taxonomic com-
position and potential functional content with MetaPhlAn4 and
HUMAnN 3.0 (UniRef90 gene-families and MetaCyc metabolic path-
ways), using standardparameters. Functional profiling resulted in8528
distinct Kyoto Encyclopedia of Genes and Genomes Orthology (KO)
groups and 511 metabolic pathways, which align with previous human
gut microbiome studies96.

Blood sample collection and biochemical analyses
All participants were tested between the hours of 6:00 a.m. and 9:00
a.m., after an overnight fast for body composition assessments
(height, body weight, and total body composition) at weeks 0, 4, and
8. 12-h fasted venous blood samples (~20mL) were collected into
EDTA-coated vacutainer tubes and centrifuged (Hettich Rotina
46R5) for 15min at 4000 × g at −4 °C. After separation, plasma was
stored at −80 °C until analyzed. Undiluted plasma samples were sent
to Eve Technologies (Calgary, Alberta, Canada) for assessment of
inflammatory cytokines [Granulocyte-macrophage colony-
stimulating factor [GM-CSF], interferon-γ (IFNγ), interleukin (IL)-β,
IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-17A, IL-23, and
Tumor necrosis factor-α (TNFα)] using a high human sensitivity 14-
plex cytokine assay (Millipore, Burlington, MA). Circulating LBP
concentrations were quantified in duplicate using 1000x diluted
plasma samples. A commercially available kit was used per the
manufacturer’s protocol (Cat No. EH297RB, Thermo Fisher Scien-
tific, Inc, Waltham, MA; intra-assay coefficient variation [CV] <10%).

Targeted plasma metabolomic analysis
For the plasma metabolomic analysis, a 12-h fasted venous blood
sample (~20mL) was collected into EDTA-coated vacutainer tubes and
centrifuged (Hettich Rotina 46R5) for 15min at 4000 × g at 4 °C. After
separation, 2mL of plasma was aliquoted and stored at −80 °C at the
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Biochemistry Laboratory at Skidmore College (Saratoga Springs, NY,
USA). Sampleswere then sent to theArizonaMetabolomics Laboratory
at ASU (Phoenix, AZ, USA) overnight on dry ice for analysis, where they
were thawed at 4 °C and processed. Briefly, 50μL of plasma from each
sample was processed to precipitate proteins and extract metabolites
by adding 500μL MeOH and 50μL internal standard solution (con-
taining 1810.5μM 13C3-lactate and 142μM 13C5-glutamic acid). The
mixture was vortexed (10 s) and stored for 30min at –20 °C, then
centrifuged at 224,000× g for 10min at 4 °C. Supernatants (450μL)
were extracted, transferred to new Eppendorf vials, and dried (Cen-
triVap Concentrator; Labconco, Fort Scott, KS, USA). Samples were
then reconstituted in 150 μL of 40% phosphate-buffered saline (PBS)/
60% acetonitrile (ACN) and centrifuged again at 22,000× g at 4 °C for
10min. Supernatants (100 µL) were transferred to an LC autosampler
vial for subsequent analysis. Quality control (QC) was performed by
creating a pooled sample from all plasma samples and injecting once
every ten experimental samples to monitor system performance.

The highly-reproducible targeted LC–MS/MSmethod used in the
current investigation was modeled after previous studies97–99. The
specific metabolites included in our targeted detection panel are
representative of more than 35 biological pathways most essential to
biological metabolism and have been successfully leveraged for the
sensitive and broad detection of effects related to diet100, diseases101,
drug treatment102, environmental contamination103, and lifestyle
factors104. Briefly, LC–MS/MS experiments were performed on an
Agilent 1290 UPLC-6490 QQQ-MS system (Santa Clara, CA, USA). Each
sample was injected twice for analysis, 10 µL using negative and 4 µL
using positive ionization modes. Chromatographic separations were
performed in hydrophilic interaction chromatography (HILIC) mode
on aWaters Xbridge BEH Amide column (150 × 2.1mm, 2.5 µmparticle
size,Waters Corporation,Milford,MA, USA). The flow rate was 0.3mL/
min, the autosampler temperature was maintained at 4 °C, and the
column compartment was set at 40 °C. The mobile phase system was
composed of Solvents A (10mM ammonium acetate, 10mM ammo-
nium hydroxide in 95% H2O/5% ACN) and B (10mM ammonium acet-
ate, 10mMammoniumhydroxide in 95%ACN/5%H2O). After the initial
1min isocratic elution of 90% Solvent B, the percentage of Solvent B
decreased to 40% at t = 11min. The composition of Solvent B was
maintained at 40% for 4min (t = 15min).

The mass spectrometer was equipped with an electrospray
ionization (ESI) source. Targeted data acquisition was performed
in multiple-reaction monitoring (MRM) mode. The LC–MS system
was controlled by Agilent MassHunter Workstation software (Santa
Clara, CA, USA), and extracted MRM peaks were integrated using
Agilent MassHunter Quantitative Data Analysis software (Santa
Clara, CA, USA).

GC–MS fecal short-chain fatty acid analysis
Before GC–MS analysis of SCFAs, frozen fecal samples were first
thawed overnight under 4 °C. Then, 20mg of each sample was
homogenized with 5 μL hexanoic acid—6,6,6-d3 (internal standard;
200 µM in H2O), 15 μL sodium hydroxide (NaOH [0.5M]), and 500 μL
MeOH. Samples were stored at −20 °C for 20min and centrifuged at
22,000 × g for 10min afterward. Next, 450 μL of supernatant was
collected, and the sample pH was adjusted to 10 by adding 30 μL of
NaOH:H2O (1:4, v-v). Samples were then dried, and the residues were
initially derivatized with 40 µL of 20mg/mL MeOX solution in pyr-
idine under 60 °C for 90min. Subsequently, 60 µL of MTBSTFA
containing d27-mysristic acid was added, and the mixture was incu-
bated at 60 °C for 30min. The samples were then vortexed for 30 s
and centrifuged at 22,000 × g for 10min. Finally, 70 µL of super-
natant was collected from each sample and injected into new glass
vials for GC–MS analysis.

GC–MS conditions used here were adopted from a previously
published protocol105. Briefly, GC–MSexperiments were performed on

an Agilent 7820AGC-5977BMSD system (Santa Clara, CA); all samples
were analyzed by injecting 1 µL of prepared samples. Helium was the
carrier gas with a constant flow rate of 1.2mL/min. Separation of
metabolites was achieved using an Agilent HP-5 ms capillary column
(30m× 250 µm×0.25 µm). Ramping parameters were as follows: col-
umn temperaturewasmaintained at 60 °C for 1min, increased at a rate
of 10 °C/min to 325 °C, and then held at this temperature for 10min.
Mass spectral signals were recorded at an m/z range of 50–600, and
data extraction was performed using Agilent Quantitative Analysis
software. Following peak integration, metabolites were filtered for
reliability. Only those with QC CV< 20% and a relative abundance of
1000 in > 80% of samples were retained for statistical analysis.

Untargeted fecal metabolomic analysis
Briefly, each fecal sample (~20mg) was homogenized in 200 µL
MeOH:PBS (4:1, v-v, containing 1810.5μM 13C3-lactate and 142μM 13C5-
glutamic Acid) in an Eppendorf tube using a Bullet Blender homo-
genizer (Next Advance, Averill Park, NY). Then 800 µL MeOH:PBS (4:1,
v-v, containing 1810.5μM 13C3-lactate and 142μM 13C5-glutamic Acid)
was added, and after vortexing for 10 s, the samples were stored at
−20 °C for 30min. The samples were then sonicated in an ice bath for
30min. The samples were centrifuged at 22,000 × g for 10min (4 °C),
and 800 µL supernatant was transferred to a new Eppendorf tube. The
samples were then dried under vacuum using a CentriVap Con-
centrator (Labconco, Fort Scott, KS). Prior toMS analysis, the obtained
residue was reconstituted in 150μL 40% PBS/60% ACN. A quality
control (QC) sample was pooled from all the study samples.

The untargeted LC–MS metabolomics method used here was
modeled after that developed and used in a growing number of
studies106–108. Briefly, all LC–MS experiments were performed on a
Thermo Vanquish UPLC-Exploris 240 Orbitrap MS instrument (Wal-
tham, MA). Each sample was injected twice, 10 µL for analysis using
negative ionization mode and 4 µL for analysis using positive ioniza-
tion mode. Both chromatographic separations were performed in
hydrophilic interaction chromatography (HILIC) mode on a Waters
XBridge BEH Amide column (150 × 2.1mm, 2.5 µmparticle size, Waters
Corporation,Milford,MA). The flow rate was 0.3mL/min, autosampler
temperature was kept at 4 °C, and the column compartment was set at
40 °C. The mobile phase was composed of Solvents A (10mM
ammonium acetate, 10mM ammonium hydroxide in 95% H2O/5%
ACN) and B (10mMammonium acetate, 10mM ammonium hydroxide
in 95% ACN/5% H2O). After the initial 1min isocratic elution of 90% B,
the percentage of Solvent B decreased to 40% at t = 11min. The com-
position of Solvent Bmaintained at 40% for 4min (t = 15min), and then
the percentage of B gradually went back to 90%, to prepare for the
next injection. Using mass spectrometer equipped with an electro-
spray ionization (ESI) source, we collected untargeted data from 70 to
1050m/z.

To identify peaks from the MS spectra, we made extensive use of
the in-house chemical standards (~600 aqueous metabolites), and in
addition, we searched the resulting MS spectra against the HMDB
library, Lipidmap database, METLIN database, as well as commercial
databases including mzCloud, Metabolika, and ChemSpider. The
absolute intensity threshold for the MS data extraction was 1000, and
the mass accuracy limit was set to 5 ppm. Identifications and annota-
tions used available data for retention time (RT), exact mass (MS), MS/
MS fragmentation pattern, and isotopic pattern. We used the Thermo
Compound Discoverer 3.3 software for aqueous metabolomics data
processing. The untargeted data were processed by the software for
peakpicking, alignment, and normalization. To improve rigor, only the
signals/peaks with CV < 20% across quality control (QC) pools, and the
signals showing up in>80%of all the sampleswere included for further
analysis. To ensure the robustness of our model validation, we
employed an enhanced validation approach by repeating the LOOCV
process 100 times. Each iteration involves excluding one sample from
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the dataset to serve as the test set, with themodel being trained on the
remaining samples. This approach, referred to as ‘repeated LOOCV’,
was adopted tomitigate bias and provide a thorough validation of our
model’s predictive capability. The method signifies the number of
repetitions of the LOOCVprocess, rather than splitting the dataset into
100 equal parts.

Multi-omics data analysis
For MOFA, bacterial 16S rRNA ASVs and plasma metabolites were
integrated using the MOFA2 package55. Before integration, ASV
sequences were filtered (minimum of 5 ASV in greater than 10% of all
samples), collapsed to the genus level, and scaled using a centralized-
log-ratio, as described previously109. Plasma metabolites were scaled
and normalized as described in the metabolome analysis. The inputs
for MOFA model training comprised 53 taxa and 138 metabolites. The
latent factors and feature loadings were extracted from the best-
trained model with the built-in functions of MOFA2. After model fit-
ting, the number of factors was estimated by requiring a minimum of
2% variance explained across all microbiome modalities.

Integratingmicrobial taxa with the same filtration as stated above
(at the genus level from 16S amplicon sequencing and species
level from metagenomic sequencing) and cytokine data and fecal
metabolomic data, respectively, was conducted with GFLASSO (R
package: GFLASSO, v0.0.0.9000). This correlation-based network
solution can handle multiple response variables for a given set of
predictors (in this case: 1. cytokine abundances predicted bymicrobial
taxa response; and 2. fecalmetabolite response predicted bymicrobial
taxa). Solution parsimony was determined by an unweighted (i.e.,
presence or absence of association by imposing a correlation thresh-
old) network structure. The regularization and fusion parameters were
determined from the smallest root mean squared error (RMSE) esti-
mate via cross-validation, accounting for interdependencies among
microbial features. The tested parameters encompassed all combina-
tions between λ and γwith values ranging from0 to 1 (inclusive) in step
increments of 0.1. GFLASSO coefficient matrices were constructed
using a threshold coefficient of >0.02 to discern the strongest asso-
ciative signals.

Statistical analysis
Gastrointestinal symptom scores were on the low end of the GSRS
scale and not normally distributed; therefore, nonparametric statis-
tical tests were applied. Symptom prevalence (number of scores ≥ 2)
and moderate symptom prevalence (≥4) for total, upper, and lower GI
GSRS clusters were analyzed using contingency tables. Specifically,
differences between IF-P and CR GI symptoms at baseline were com-
pared using a Fisher’s Exact test, whereas baseline vs. weeks four and
eight values were compared with McNemar’s test. Stool weight, BSS,
fecal pH, plasma cytokines and LBP, and SCFAs were assessed for
normality with Q-Q plots and Shapiro-Wilk tests and log-transformed
where appropriate. These were then tested for time and interaction
(group × time) effects using linear-mixed effect (LME) models, with
each participant included as a random effect.

For analysis and visualization of the microbiome data, artifacts
generated in QIIME2 were imported into the R environment (v4.2.2)
using the phyloseq package (v1.42.0)110. Before conducting down-
stream analyses, sequences were filtered to remove all non-bacterial
sequences, including archaea, mitochondria, and chloroplasts. After
assessing normality (Shapiro-Wilk’s tests), LME models were used to
test the effect of time and the interaction of group and time with the
covariates of age and sex with each participant included as a random
effect on the alpha diversity metrics using the nLME package
(v3.1.160). For beta diversity, a nested permutational analysis of var-
iance (PERMANOVA) was conducted on Bray-Curtis dissimilarities
using the Adonis test in the vegan package (v2.6.2) with 999 permu-
tations. The PERMANOVA model incorporated the factors of time,

individual, interaction (group × time), and participant (nested factor).
A permutation test for homogeneity in multivariate dispersion
(PERMDISP) was conducted using the ‘betadisper’ function in the
vegan package to compare dispersion. To support the Adonis analysis,
intra-individual differences were also compared between groups, as
previously described111, by calculating the within-subject distance for
paired samples (baseline vs. weeks four and eight) and testing for
group distances (Wilcoxon rank-sum test). Differential abundance
analysis was performed using MaAsLin2 (v1.12.0)18. To detect changes
in microbial features between groups over time, we built linear-mixed
models that include group, time, and their interaction, with age and
sex as covariates and the participant as a random factor. Before ana-
lysis, raw counts from the ASV table were filtered for any sequence
not present five times in at least 30% of all samples. A significant
p-value for the product term indicates that changes in microbial fea-
tures differed over time between groups. The Benjamini–Hochberg
(BH) procedure was used to correct for multiple testing at ≤0.10. To
assess the correlationbetween changes in specific taxa andbiomarkers
over the eight-week intervention, Spearman correlation tests were
performed.

Univariate and multivariate analyses of plasma metabolites and
metabolic ontology analysis were performed, and results were
visualized using the MetaboAnalystR 5.0112. Human metabolomic
data weremapped to the Kyoto Encyclopedia of Genes andGenomes
(KEGG) human pathway library to analyze predicted states113. The
data were log10-transformed, and Pareto scaled to approximate
normality before all analyses. A GLM was constructed with age, sex,
and time as covariates to determine significantly affected metabo-
lites by group intervention. Levene’s test was performed to detect
significant homogeneity. The BH procedure was used to correct for
multiple testing at ≤0.10. Fecal metabolomic analysis for the sub-
group comparison was performed by assessing logFC values
between groups with a Wilcoxon rank-sum test with BH adjustment.
For pathway analysis, the impact was calculated using a hypergeo-
metric test, while significance was determined using a test of relative
betweenness centrality. Importantly, the BH procedure was not
applied to pathway and enzyme enrichment analyses for the sub-
group assessment since these analyses involve testing the sig-
nificance of multiple related hypotheses rather than independent
hypotheses, which is too conservative, resulting in false negative
results.

For MOFA, latent factors explaining ≥2.0% of model variance
from the plasma metabolomic and amplicon microbiome data were
used to perform Spearman correlations on anthropometric and
nutritional data and compared between IF-P and CR groups using
Wilcoxon rank-sum tests. The highest beta coefficients (>0.3)
detected from GFLASSO models were further assessed by perform-
ing Spearman correlations of select microbial features with the
response variables (i.e., cytokines and fecal metabolites). All statis-
tical tests were performedwith a significance level of p < 0.05 andBH
correction of p.adj < 0.10. In addition, we present data in this study in
accordance with the ‘Strengthening The Organization and Reporting
of Microbiome Studies’ (STORMS) guidelines for human micro-
biome research114.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The microbiome sequencing data generated in this study have been
deposited in the BioProject Database of National Centre for Bio-
technology Information database under accession code PRJNA847971.
The metadata data linking the microbiome sequences with the
appropriate sample ID and intervention in this study are provided in
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Supplementary Data 1. The processed data are available at https://
github.com/Alex-E-Mohr/GM-Remodeling-IF-ProteinPacing-vs-
CaloricRestriction. Source data are provided with this paper.

Code availability
The R code used for analysis and figure generation for reproducibility
purposes are available at: https://github.com/Alex-E-Mohr/GM-
Remodeling-IF-ProteinPacing-vs-CaloricRestriction.115
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